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Problem

Our goal is to determine the location of a target
in each frame of an image sequence, to detect its
disappearance, and to be able to re-detect it after
an occlusion. Without prior knowledge, the tracker
has to adapt to the target, background and record-
ing conditions of the video. Each update introduces
some error, so the tracker might drift away from the
target over time.
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Source Code

The source code, configurations and detailled results
of our tracking algorithm are available at
http://adaptivetracking.github.io/

Motion Model

e Baseline: Constant velocity model

e Enhancement: Predict new target position using
optical flow of a grid of points

e Remove bad points (red lines in figure above) [1]

e Optical flow improves the performance in most se-
quences, but fails in case of out-of-plane rotations
or (partial) occlusions

pixel level), yellow particle in figure above will be
weighted as if it was at the green position

Increases run-time efficiency, as convolution on all
feature pyramid layers is faster than computing
features and score per particle

Update Strategy

Baseline: Update SVM whenever the estimated
target position is considered positive

Enhancement: Introduce learning condition, up-
date SVM only when the score is above some pre-

defined threshold

Learning condition improves performance by re-
ducing bad updates (e.g. partial occlusions, see
left figure), but in some cases prevents all updates

Overlap threshold

Evaluated using BoBoT dataset [3, 4] consisting of
13 image sequences (320x240 pixels at 25 fps)

Tracking of pedestrians and arbitrary objects

Features conditions like lighting changes, partial
and full occlusions, out-of-plane rotations, chang-
ing background, and distracting objects

Diagram shows fraction of correctly tracked frames
given a chosen overlap threshold

Overlap is the fraction of intersection to union of
ground truth and estimated bounding box

Further Work

Choice of learning threshold is crucial

Too low: Bad updates, drifts away from target
Too high: No updates, loses target after appear-
ance changes

ldeal threshold depends on conditions, a single
threshold does not work equally well on all image
sequences

We will explore the possibility of having an adap-
tive threshold or find other ways to prevent bad
updates and allow correct ones

BT: Base tracker

OF: Optical-flow-based motion model

[ C: Learning condition

SW: Sliding-window-based measurement model

Both optical-flow-based motion model and learn-
ing condition increase performance, especially when
combined

Adding the sliding-window-based measurement
model deteriorates performance, but increases
speed (~60 fps compared to ~25 fps)
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